"""
GMT supplementary X2SYS module for crossover analysis.
"""
import contextlib
import pandas as pd
from .clib import Session
from .exceptions import GMTInvalidInput
from .helpers import (
GMTTempFile,
build_arg_string,
data_kind,
dummy_context,
fmt_docstring,
kwargs_to_strings,
use_alias,
)
[docs]@fmt_docstring
@use_alias(
D="fmtfile",
E="suffix",
F="force",
G="discontinuity",
I="spacing",
N="units",
R="region",
V="verbose",
W="gap",
j="distcalc",
)
@kwargs_to_strings(I="sequence", R="sequence")
def x2sys_init(tag, **kwargs):
"""
Initialize a new x2sys track database.
x2sys_init is the starting point for anyone wishing to use x2sys; it
initializes a set of data bases that are particular to one kind of track
data. These data, their associated data bases, and key parameters are given
a short-hand notation called an x2sys TAG. The TAG keeps track of settings
such as file format, whether the data are geographic or not, and the
binning resolution for track indices.
Before you can run x2sys_init you must set the environmental parameter
X2SYS_HOME to a directory where you have write permission, which is where
x2sys can keep track of your settings.
Full option list at :gmt-docs:`supplements/x2sys/x2sys_init.html`
{aliases}
Parameters
----------
tag : str
The unique name of this data type x2sys TAG.
fmtfile : str
Format definition file prefix for this data set [See Format Definition
Files for more information]. Specify full path if the file is not in
the current directory.
Some file formats already have definition files premade. These include:
- mgd77 (for plain ASCII MGD77 data files)
- mgd77+ (for enhanced MGD77+ netCDF files)
- gmt (for old mgg supplement binary files)
- xy (for plain ASCII x, y tables)
- xyz (same, with one z-column)
- geo (for plain ASCII longitude, latitude files)
- geoz (same, with one z-column).
suffix : str
Specifies the file extension (suffix) for these data files. If not
given we use the format definition file prefix as the suffix (see
*fmtfile*).
discontinuity : str
``d|g``
Selects geographical coordinates. Append **d** for discontinuity at the
Dateline (makes longitude go from -180 to + 180) or **g** for
discontinuity at Greenwich (makes longitude go from 0 to 360
[Default]). If not given we assume the data are Cartesian.
spacing : str or list
``dx[/dy]``
x_inc [and optionally y_inc] is the grid spacing. Append **m** to
indicate minutes or **s** to indicate seconds for geographic data.
These spacings refer to the binning used in the track bin-index data
base.
units : str or list
``d|sunit``.
Sets the units used for distance and speed when requested by other
programs. Append **d** for distance or **s** for speed, then give the
desired unit as:
- **c** - Cartesian userdist or userdist/usertime
- **e** - meters or m/s
- **f** - feet or feet/s
- **k** - km or kms/hr
- **m** - miles or miles/hr
- **n** - nautical miles or knots
- **u** - survey feet or survey feet/s
Default is ``units=["dk", "se"]`` (km and m/s) if *discontinuity* is
set, and ``units=["dc", "sc"]`` otherwise (Cartesian units).
{R}
{V}
gap : str or list
``t|dgap``.
Give **t** or **d** and append the corresponding maximum time gap (in
user units; this is typically seconds [Infinity]), or distance (for
units, see *units*) gap [Infinity]) allowed between the two data points
immediately on either side of a crossover. If these limits are exceeded
then a data gap is assumed and no COE will be determined.
{j}
"""
with Session() as lib:
arg_str = " ".join([tag, build_arg_string(kwargs)])
lib.call_module(module="x2sys_init", args=arg_str)
[docs]@fmt_docstring
@use_alias(
A="combitable",
C="runtimes",
# D="",
I="interpolation",
R="region",
S="speed",
T="tag",
Q="coe",
V="verbose",
W="numpoints",
# Z="",
)
@kwargs_to_strings(R="sequence")
def x2sys_cross(tracks=None, outfile=None, **kwargs):
"""
Calculate crossovers between track data files.
x2sys_cross is used to determine all intersections between ("external
cross-overs") or within ("internal cross-overs") tracks (Cartesian or
geographic), and report the time, position, distance along track, heading
and speed along each track segment, and the crossover error (COE) and mean
values for all observables. By default, x2sys_cross will look for both
external and internal COEs. As an option, you may choose to project all
data using one of the map-projections prior to calculating the COE.
Full option list at :gmt-docs:`supplements/x2sys/x2sys_cross.html`
{aliases}
Parameters
----------
tracks : str or list
A table or a list of tables with (x, y) or (lon, lat) values in the
first two columns. Supported formats are ASCII, native binary, or
COARDS netCDF 1-D data. More columns may also be present.
If the filenames are missing their file extension, we will append the
suffix specified for this TAG. Track files will be searched for first
in the current directory and second in all directories listed in
$X2SYS_HOME/TAG/TAG_paths.txt (if it exists). [If $X2SYS_HOME is not
set it will default to $GMT_SHAREDIR/x2sys]. (Note: MGD77 files will
also be looked for via $MGD77_HOME/mgd77_paths.txt and *.gmt files will
be searched for via $GMT_SHAREDIR/mgg/gmtfile_paths).
outfile : str
Optional. The file name for the output ASCII txt file to store the
table in.
tag : str
Specify the x2sys TAG which identifies the attributes of this data
type.
combitable : str
Only process the pair-combinations found in the file *combitable*
[Default process all possible combinations among the specified files].
The file *combitable* is created by *x2sys_get*'s -L option
runtimes : bool or str
Compute and append the processing run-time for each pair to the
progress message (use ``runtimes=True``). Pass in a filename (e.g.
``runtimes="file.txt"``) to save these run-times to file. The idea here
is to use the knowledge of run-times to split the main process in a
number of sub-processes that can each be launched in a different
processor of your multi-core machine. See the MATLAB function
split_file4coes.m that lives in the x2sys supplement source code.
D : bool or str
``S|N``.
Control how geographic coordinates are handled (Cartesian data are
unaffected). By default, we determine if the data are closer to one
pole than the other, and then we use a cylindrical polar conversion to
avoid problems with longitude jumps. You can turn this off entirely
with -D and then the calculations uses the original data (we have
protections against longitude jumps). However, you can force the
selection of the pole for the projection by appending **S** or **N**
for the south or north pole, respectively. The conversion is used
because the algorithm used to find crossovers is inherently a
Cartesian algorithm that can run into trouble with data that has large
longitudinal range at higher latitudes.
interpolation : str
``l|a|c``.
Sets the interpolation mode for estimating values at the crossover.
Choose among:
- **l** - Linear interpolation [Default].
- **a** - Akima spline interpolation.
- **c** - Cubic spline interpolation.
coe : str
Use **e** for external COEs only, and **i** for internal COEs only
[Default is all COEs].
{R}
speed : str or list
``l|u|hspeed``.
Defines window of track speeds. If speeds are outside this window we do
not calculate a COE. Specify:
- **l** sets lower speed [Default is 0].
- **u** sets upper speed [Default is Infinity].
- **h** does not limit the speed but sets a lower speed below which \
headings will not be computed (i.e., set to NaN) [Default calculates \
headings regardless of speed].
For example, you can use ``speed=["l0", "u10", "h5"] to set a lower
speed of 0, upper speed of 10, and disable heading calculations for
speeds below 5.
{V}
numpoints : int
Give the maximum number of data points on either side of the crossover
to use in the spline interpolation [Default is 3].
Z : bool
Report the values of each track at the crossover [Default reports the
crossover value and the mean value].
Returns
-------
crossover_errors : pandas.DataFrame or None
Table containing crossover error information.
Return type depends on whether the outfile parameter is set:
- pandas.DataFrame table with (x, y, ..., etc) if outfile is not set
- None if outfile is set (track output will be stored in outfile)
"""
with Session() as lib:
file_contexts = []
for track in tracks:
kind = data_kind(track)
if kind == "file":
file_contexts.append(dummy_context(track))
elif kind == "matrix":
raise NotImplementedError(f"{type(track)} inputs are not supported yet")
# file_contexts.append(lib.virtualfile_from_matrix(track.values))
else:
raise GMTInvalidInput(f"Unrecognized data type: {type(track)}")
with GMTTempFile(suffix=".txt") as tmpfile:
with contextlib.ExitStack() as stack:
fnames = [stack.enter_context(c) for c in file_contexts]
if outfile is None:
outfile = tmpfile.name
arg_str = " ".join([*fnames, build_arg_string(kwargs), "->" + outfile])
lib.call_module(module="x2sys_cross", args=arg_str)
# Read temporary csv output to a pandas table
if outfile == tmpfile.name: # if outfile isn't set, return pd.DataFrame
# Read the tab-separated ASCII table
# Header is on 2nd row, and we skip the 3rd row with a ">"
df = pd.read_csv(tmpfile.name, sep="\t", header=2, comment=">")
# Remove the "# " from "# x" in the first column
result = df.rename(columns={df.columns[0]: df.columns[0][2:]})
elif outfile != tmpfile.name: # if outfile is set, output in outfile only
result = None
return result